NAM-to-speech conversion with Gaussian mixture models

نویسندگان

  • Tomoki Toda
  • Kiyohiro Shikano
چکیده

In order to realize a new human communication style using Non-Audible Murmur (NAM) that cannot be heard by people around a speaker, we perform conversion from NAM to ordinary speech (NAM-to-Speech). NAM-to-Speech has a possibility of realizing “non-speech telephone” that is a technique for communicating each other by talking in NAM and hearing in speech. In this paper, we apply a statistical conversion method with Gaussian Mixture Model (GMM) to NAM-to-Speech. In advance, we train GMMs for representing correlations between acoustic features of NAM and those of speech using 50 utterance pairs of NAM and speech. In the conversion, we estimate acoustic spectral and F0 features of speech based on a maximum likelihood criterion, and then synthesize the converted speech with a vocoder. From results of subjective evaluations on intelligibility and naturalness, it is demonstrated that the NAMto-Speech with GMMs can convert NAM to more consistently natural voice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Predicting F0 and voicing from NAM-captured whispered speech

The NAM-to-speech conversion proposed by Toda and colleagues which converts Non-Audible Murmur (NAM) to audible speech by statistical mapping trained using aligned corpora is a very promising technique, but its performance is still insufficient, mainly due to the difficulty in estimating F0 of the transformed voice from unvoiced speech. In this paper, we propose a method to improve F0 estimatio...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005